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1 INTRODUCTION 
The inspection and management of civil structures 
after the occurrence of a severe earthquake event is 
subjected to considerable challenges. The post-
earthquake deterioration as a result of the sequence of 
after-shocks may obstacle significantly eventual 
inspections and/or re-occupancy of these structures. In 
fact, a significant main-shock is often followed by a 
number of after-shock events (usually smaller in 
moment magnitude) which take place in a limited area 
(i.e., the after-shock zone) around the epicenter of the 
main event. This sequence of after-shock events can 
last in some cases for months. Although these events 
are smaller in magnitude with respect to the main 
event, they can prove to be destructive on the 
structure. This is due to both the significant number of 
after-shocks (in some cases up to 6000) and to the fact 
that the structure has probably already suffered 
damage from the main event. 
The occurrence of main-shock events is often modeled 
by a homogenous Poisson stochastic process with 
time-invariant rate. However, the sequence of after-

shocks are characterized by a rate of occurrence that 
decreases as a function of time elapsed after the 
earthquake. Therefore, the occurrence of the after-
shocks are modeled by a non-homogenous Poisson 
process with a decreasing time-variant rate. The first 
few days after the occurrence of main-shock can be 
very decisive as there is urgent need for re-occupancy 
of the building (for rescue or for inspection) while the 
mean daily after-shock rate is quite considerable. 
The present study presents a procedure for calculating 
the time-dependent probability of exceeding the limit 
states corresponding to various discrete performance 
objectives. A simple cyclic stiffness deteriorating 
single degree of freedom (SDOF) model of the 
structure is used in order to study the damages induced 
as a result of a sequence of after-shocks. The time-
decaying model parameters are estimated for the 
L’Aquila 2009 after-shock sequence using a Bayesian 
updating framework based on the Italian generic 
sequence as prior information. As a criteria for 
assessment of the decisions regarding re-entrance for 
inspections purposes, the (time-dependent) probability 
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of exceeding the limit state of life-safety in a 24-hour 
interval is compared to an acceptable threshold. The 
less severe limit states of severe damage and onset of 
damage can be used in a similar manner in order to 
make decisions regarding the re-occupancy and 
serviceability of the structure. 

2 METHODOLOGY 
The objective of this methodology is to calculate the 
time-dependent probability of exceeding various 
discrete limit states in a given interval of time for a 
given structure subjected to a sequence of after-
shocks. The methodology presented herein for the 
evaluation of the limit state probability in a given time 
interval can be used for decision making between 
different viable actions such as, re-entry/evacuation, 
re-occupancy/shutting down. This methodology starts 
from the state of the structure after it is hit by a main-
shock. Therefore, given that the main shock wave-
forms are available, the damages undergone by the 
structural model can be evaluated. The clustering of 
earthquakes usually occurs near the location of the 
main-shock also referred to as the after-shock zone. 
Therefore, it is assumed that for the sequence of 
earthquakes including the main-shock and after-shock 
events, each point within the after-shock zone is 
equally likely to be the epicenter of an earthquake 
event. The aftershock clusters should be eventually 
classified based on their generating source, should 
they belong to different fault structures, as in the case 
of L’Aquila Earthquake. An important characteristic 
of the sequence of after-shocks following the main-
shock is that the rate of after-shocks dies off quickly 
with time elapsed since the main-shock. The time-
decaying parameters of the aftershock sequence are 
estimated by applying a Bayesian updating framework 
to the L’Aquila 2009 sequence based on the Italian 
generic after-shock model as prior information. The 
methodology presented is of an adaptive nature; that 
is, with occurrence of more after-shock events, the 
state of the structure can be updated by evaluating the 
damages undergone by the structural model subjected 
to the sequence of main-shock and after-shocks. 

2.1 Bayesian after-shock sequence parameter 
estimation 

The aftershock sequence is modeled using a non-
homogenous Poisson process in which the time-
decaying rate of the occurrence of aftershocks is 
modeled by a modified Omori law:  

p

K
N(t)=

(t+c)
 (1) 

where N(t) is the total (daily) number of after-shock 
events at time t elapsed after the main-shock and K, p 
and c are constants. The magnitude distribution for the 
aftershocks is modeled using the Gutenberg-Richter 
law:  

( ) 10 bmN m A −= ⋅  (1) 

where N(m) is the number of events with magnitude 
greater than or equal to m and A and b are constants. 
Therefore, the mean daily rate of aftershocks with 
magnitude equal to or greater than m and equal to or 
smaller than the main-shock magnitude Mm at time t 
elapsed after the main-shock is equal to:  
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Finally, the mean daily rate of aftershock with 
magnitude equal to m following a mainshock of  Mm 
can be calculated, by differentiating Equation 2 with 
respect to magnitude, as (Yeo & Cornell, 2006):  
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The uncertain parameters to be estimated are a, c and 
p where a measures the likelihood of aftershocks 
occurring and p is measure of the after-shock sequence 
decay with time and c is a time off-set parameter. 
Therefore, the posterior joint probability distribution 
for uncertain parameters a, c and p can be calculated 
by implementing the Bayes formula:  

( | , , ) ( , , )
( , , | )

( | , , ) ( , , )
a p c

p data a p c p a p c
p a p c data

p data a p c p a p c
=
∑ ∑ ∑

(4) 

where p(data|a,p,c) is the likelihood function for the 
aftershock data observed and p(a,p,c) is the joint prior 
probability distribution for parameters a and p. The 
parameter b decides the magnitude distribution of the 
after-shock events and is estimated separately (later in 
this section) using the Gutenberg-Richter magnitude 
distribution.  

2.2 Deriving the likelihood function given a, p and c 

The probability that at least one after-shock of 
magnitude equal to m occurs in time interval [0,T] 
elapsed after the occurrence of the main-shock can be 
calculated from a non-homogeneous Poisson process 
(Reasenberg & Jones 1989, 1994):  

0
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The cumulative distribution function (CDF) for the 
inter-arrival time IAT between the aftershock events 
occurring at times : 1,...,it i N=  can be written as:  

1
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ti
t dt

i i iP IAT t t t m e
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−
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where N is the total number of aftershocks occurring 
in time T. Replacing µ(t) from Equation 3 in Equation 
6, a closed-form solution for the probability 

1 1( ( ) | , )i i iP IAT t t t m− −≤ −  can be obtained as following:  
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The probability density for the inter-arrival time 
between aftershock events with magnitude m can be 
calculated by calculating the derivative of Equation 7 
with respect to time:  
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Hence, the likelihood function for a sequence of N 
aftershock events with magnitude equal to 

: 1,...,im i N=  occurring at times : 1,...,it i N=  can be 
obtained. 

2.3 The prior probability distributions for parameters 
a, p and c 

It is assumed that the prior probability distributions for 
a, p and c are independent. Regarding the choice of 
prior, the probability distributions recommended by 
Lolli and Gasperini, 2003 the generic Italian 
aftershock model, reported in Table 1, are used:  
 
Table 1: A priori predictions of Italian aftershock occurrence 
from 1981 to 1996 

 Parameter Mean Value Standard 
Deviation 

Type 

 p 0.93 0.21 Logormal 
Log10(c) -1.53 0.54 Normal 
b 0.96 0.18 Lognormal 
a -1.66 0.72 Lognormal 

2.4 Estimating the b paremeter 

The parameter b is estimated separately from the 
Gutenberg-Richter formula for the distribution of 
magnitude. The probability of having an aftershock 
with magnitude equal to m which is smaller than or 
equal to the main-shock magnitude  Mm and larger 
than a lower limit magnitude  Ml is equal to:  
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Therefore, the posterior probability distribution for 
parameter b given the sequence of aftershock event 
with magnitude Errore. can be calculated using the 
Bayes formula:  
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( | )
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where p(data|b) is the likelihood function and can be 
calculated using Equation 10:  

1

( | ) ( | )
N

i
i
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=

= ∏  (11) 

As the prior distribution p(b), the ignorance prior is 
chosen:  

.
( )

const
p b

b
=  (12) 

The lower cut-off magnitude for estimation of the b 
parameter is chosen by establishing the completeness 
criteria in the database. That is, the b-value is 
estimated by varying the lower cut-off magnitude. It 
can be observed that the estimated b-value increases 
with increasing cut-off magnitude up to around  
Ml=2.5; for magnitude values larger than that, it was 
estimated to be roughly constant.  

2.5  The probabilistic seismic after-shock hazard 

The probability that the structural acceleration at the 
fundamental period of the structure S

a
 exceeds a given 

level x given that a significant after-shock event with a 
source-to-site distance R has taken place denoted by 
P(S

a
>x|as) can be calculated as:  

max max

min min

( | ) ( | , ) ( )
m

l

M x y

a a
M x y

P S x as P S x m R p m dmdxdy> = >∫ ∫ ∫
 (13) 

where xmin,  xmax,  ymin and  ymax are the minimum and 
maximum coordinates of the after-shock zone with 
respect to the site and R2=x2+y2. It is assumed that 
every point inside the after-shock zone is equally 
likely to be the epicenter of an after-shock.  Mm is the 
moment-magnitude for the main-shock event and  Ml 
is the lower-bound for the moment magnitude for the 
earthquake events of engineering interest. The term 

( | , )aP S x m R>  can be calculated using the parameters 
of the ground motion prediction relation for the site 
and p(m) is the truncated Gutenberg-Richter 
probability density function for moment magnitude:  



4 

( )
l m

m

M M

e
p m

e e

β

β β
β −

− −=
−

 (14) 

β=blog10 where b is related to the seismicity of the 
site. The mean daily rate of exceeding a given spectral 
acceleration level can be calculated by multiplying 
Equation 14 by the average daily rate of occurrence of 
after-shock events:  

H(S
a
>x)=ν(t)⋅P(S

a
>x|as) (15) 

where ν(t) is the time-dependent average daily rate of 
occurrence of after-shocks after t days are elapsed 
from the main-shock.  

2.6 Updating the hazard after the occurrence of the 
main-shock 

After the occurrence of a main-shock, assuming that 
its wave-form is known, the probability of exceeding a 
given value of spectral acceleration can be updated 
using the Bayes formula taking into account the 
spectral acceleration at the fundamental period of the 
structure for the main-shock, Sa,ms:  

, , ,
, ,

, , ,

( | , ) ( | )
( | , )

( | , ) ( | )

a ms a as a as
a as a ms

a ms a as a asx

p S S x as p S x as
p S x S as

p S S x as p S x as

= =
= =

= =∑
 (16) 

where , ,( | , )a as a msp S x S as=  denotes the probability 
density function (PDF) for the spectral acceleration of 
the after-shock given that the spectral acceleration of 
the main-shock is known,  , ,( | , )a ms a asp S S x as= is the 
probability density function for main-shock given the 
after-shock spectral acceleration is known and 

, ,( | , )a ms a asp S S x as=  is the PDF for after-shock spectral 
acceleration before having the extra information. 
Having calculated the updated PDF, the updated 
probability of exceeding a given after-shock spectral 
acceleration can be calculated using the following 
relationship:  

( )
( ) a

a
P S x

P S x
dx

>
= = −  (17) 

3 THE ASSESSMENT OF TIME-DEPENDENT 
LIMIT STATE PROBABILITY 

Let  Tmax denote a given interval of time elapsed after 
a main-shock has taken place, N the maximum number 
of after-shock events that can take place during  Tmax 
and τ the repair time for the structure. The probability 

P(LS;Tmax) of exceeding a specified limit state LS in 
time  Tmax can be written as:  

max max
1

( ; ) ( | ) ( ; )
N

i

P LS T P LS i P i T
=

=∑  (18) 

Where P(LS|i) is the probability of exceeding the limit 
state given that exactly i after-shocks take place in 
time Tmax and P(i;Tmax) is the probability that exactly i 
after-shock events take place in time Tmax. It is 
assumed that the after-shock hazard for the site of the 
structure is expressed by a non-homogenous Poisson 
probability distribution with the time-decaying rate 
denoted by ν(t). The probability of having exactly i 
events in time Tmax can be calculated as:  
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The term P(LS|i) can be calculated by taking into 
account the set of mutually exclusive and collectively 
exhaustive (MECE) events that the limit state is 
exceeded at one and just one of the previous after-
shock events:  

P(LS|i)=P(C
1
+  C

1
 C

2
+L+,,+  C

1
C

2
LC

i−1
 C

i
|i)  

 (20) 

where , 1,...,jC j i=  indicates the event of exceeding the 
limit state LS due to the jth event and  C

j
  indicates 

the negation of C
j
. The probability P(C

j
|i) can be 

further broken down into the sum of the probabilities 
of two MECE events that event j hits the “intact” 
structure (i.e., damaged only by the main-shock) and 
that the event j hits the damaged structure:  

P(C
j
|i)=P(C

j
I|i)+P(C

j
D|i) (21) 

Equation 21 can be further expanded as follows: 

 
1

1

( | ) ( | , ) ( | ) ( | ,1) ( | )
j

j j j
k

P C i P C I i P I i P C k P k i
−

=
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where {k:k=1,2,L,i−1} indicates the number of times 
the structure has been damaged by an after-shock 
before reaching the target limit state, implying that the 
structure deteriorates with the occurrence of each 
event. The formulation in Equation 22 is based on the 
consideration that an event can hit a structure already 
damaged by one or more previous event(s). This 
situation occurs only if the inter-arrival time IAT for 
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events is smaller than the repair time τ. Moreover, 
since the inter-arrival time can be described by the 
Exponential probability distribution, the probability 
that the structure is damaged k times before reaching 
LS is equal to:  

0 0
( ) ( ( ) )

( | ) 1

k
dt dt

P k i e e
τ τ
ν τ ν τ− − 

 = −
 
 

∫ ∫  (23) 

Assuming that the structure under repair is hit by 
another after-shock event, the repair operations are 
going to resume from zero. Thus, the probability that 
the structure is intact when hit by an event can be 
calculated as the probability that the IAT is greater 
than the repair time:  

0
( ( ) )

( | )
dt

P I i e
τ
ν τ−

= ∫  (24) 

Observing Equation 22, one can identify the sequence 
of the limit state probability terms, namely, ( | , )jP C I i  
and ( | , )iP C k i  where k=1,L,(j−1).  

3.1 Estimation of limit state probabilities 

In order to calculate the sequence of limit state 
probability terms ( | , )j kP C D i  where k=1,L,(j−1), the 
following procedure is applied. A selection of n 
earthquake records (consisted of main-shocks and 
after-shocks) is selected. In order to emulate the 
deterioration caused by the sequence of after-shocks, 
each ground motion is applied k times in sequence to 
the structural model. The maximum displacement 
response of the structure due to the sequence of k 
events denoted by Y(k) is related to the spectral 
acceleration at the fundamental period of the damaged 
structure, after being subjected k−1 times in sequence 
to the selected ground motion record using the linear 
least squares (in the logarithmic scale). That is, the 
median for maximum displacement is described by 
η

Y|S
a
(T

k
)
(k)=a⋅S

a
(T

k
)b and that the standard deviation (of 

the logarithm) of Y(k) given S
a
 is calculated as:  

2

1
ln ( )| ( )

(ln ( ) ln ( ) )

2a k

n
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where a and b are regression coefficients calculated 
as:  
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The limit state probability ( | , , ( ))j k a kP C D i S T  can be 
calculated as:  

| ( )

ln ( )| ( )

log log( ( ))
( | , , ( )) 1 j a k

a k

C Y S T
j k a k

Y k S T

Y k
P C D i S T

η

σ
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 
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In order to calculate ( | , )j kP C D i , the expression in 
Equation 27 needs to be integrated with the probability 
density function (pdf) for the spectral acceleration 
given that a significant after-shock has taken place, 
calculated by the differentiation of the complementary 
cumulative distribution function for spectral 
acceleration given a significant after-shock has taken 
place. Therefore:  

0
( | , ) ( | , , ( )) ( ( ) | )j k j k a k a kP C D i P C D i S T p S T as

∞
= ⋅∫  (28) 

Where the hazard curve is calculated at the 
fundamental period of the damaged structure after it is 
being heat by k−1 ground motion records. The 
procedure described in this section for the calculation 
of the probability of exceeding limit state LS can be 
employed to calculate the limit state probabilities for 
an increasing sequence of limit states, e.g., from 
serviceability to collapse.  

3.2 The limit state probability in a 24-hour interval 

In the previous section, it is explained how the 
probability of exceeding the limit state LS in a given 
interval of time can be calculated. However, it is of 
interest to calculate the probability of exceeding the 
limit state in a reference time interval(e.g., 24 hours). 
The probability of exceeding the limit state in the 
reference time interval [T,T+∆T] can be calculated as:  

P(LS;[T,T+∆T])=P(LS;T+∆T)−P(LS;T) (29) 

Therefore, the probability of exceeding the limit state 
in one day can be calculated from Equation 29, by 
setting ∆T equal to one.  

4 NUMERICAL EXAMPLE 
The methodology presented in the previous section is 
applied to an existing structure as a case study.  
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4.1 Structural model 

The case-study building is a generic five-story RC 
frame structure designed to resist seismic action. Each 
storey is 3.00m high, except the second one, which is 
4.00m high. The non-linear behavior in the sections is 
modeled based on the concentrated plasticity concept. 
It is assumed that the plastic moment in the hinge 
sections is equal to the ultimate moment capacity in 
the sections. More details can be found in a previous 
work by the authors (Asprone et al. 2010). In order to 
simplify the structural analyses, an equivalent 
degrading (SDOF) system is used as the structural 
model. In order to model the the non-linear 
characteristics of the equivalent SDOF system, a non-
linear static analysis on the case-study structure is 
performed. The resulting pushover curve is 
transformed into that of an equivalent SDOF system 
with T

1
=0.58sec and yield displacement equal to 

d
y
=0.034 calculated based on the first mode shape of 

the structure. Based on the resulting equivalent 
pushover curve, a non-linear degrading hysteresis 
model for the equivalent SDOF system is constructed.  

4.2 The L’Aquila aftershock sequence 

The Bayesian updating framework is used in order to 
calculate the parameters of the aftershock occurrence 
rate for the sequence of after-shocks following the 
L’Aquila earthquake of 6th April 2009 with moment 
magnitude equal to M

m
=6.3. In order to estimate the 

parameters of the L’Aquila sequence, the lower cut-off 
level for magnitude is set at M=3 which is above the 
completeness level as discussed before. The b is 
calculated as the maximum likelihood estimate (MLE) 
value for the posterior probability distribution updated 
given the L’Aquila sequence magnitude values. It can 
be seen the the MLE for b value is equal to b=1.03. 
This is while the b value for the generic California 
after-shock sequence is calculated to be equal to 
b=0.91.The parameters a, p and c are estimated using 
the procedure described in previous section using a 
cut-off magnitude equal to M=3. The joint posterior 
probability distribution for a, p and c is also 
calculated.  

4.3 Calculation of failure probabilities 

In order to calculate the failure probabilities due to the 
sequence of after-shock events, a set of 50 ground 
motion records (consisting of main-shocks and after-
shocks) are chosen. Each ground motion record is 
applied sequentially k times on the equivalent SDOF 
model with cyclic stiffness degrading behavior. The 

probability of failure given that a sequence of k after-
shocks has occurred is calculated following the 
procedure explained in previous section. For each 
sequence of k earthquakes, the maximum displacement 
response of the equivalent SDOF system is calculated. 
A linear least squares method is used to estimate the 
median and the standard deviation of maximum 
displacement as a function of spectral acceleration at 
the fundamental period of the damaged structure being 
subjected to k−1 ground motion records. The median 
and standard deviation of the maximum displacement 
of the k-times damaged structure are then used to 
calculate the structural fragility assuming that it is 
lognormal. The failure probability for the damaged 
structure can be calculated by integrating the structural 
fragility and the spectral acceleration hazard at a 
period close to the fundamental period of the damaged 
structure.  

4.4 The probability of failure in a 24-hour time 
interval 

The probability of exceeding the limit state of collapse 
in a day (24 hours) has been calculated from Equation 
29 setting ∆T=1. The results are plotted in Figure 1 
where they are compared against an acceptable mean 
daily collapse rate of 2×10−3/365, as a proxy for life 
safety considerations. This threshold value is on 
average equivalent to an acceptable mean annual rate 
of collapse equal to 2×10−3. This verification is done 
for ensuring life safety for the building occupants. 
  

 

Figure 1: Probability of exceeding the collapse limit 
state in a day 
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It can be observed that the low-residual structure is 
immediately below the acceptable threshold for life-
safety limit state; whereas, the high-residual case does 
not verify the acceptable threshold up to around one 
week elapsed after the occurrence of the main-shock. 
After 7 days, due to the decreasing rate of occurrence 
of after-shocks, the structure verifies against the life-
safety limit state threshold. It should be noted that 
such a time-variant performance assessment can be 
potentially useful for evaluation of the re-occupancy 
risk for the structure after a certain amount of time has 
passed from the occurrence of the main shock. In fact, 
the necessary time elapsed after the occurrence of 
main-shock in order for the structure to verify the life-
safety limit state is calculated for a range of residual to 
collapse displacement capacity ratios. Figure 2 
illustrates (solid line) the time required in order to 
verify the collapse limit state for different residual 
percentiles for the L’Aquila after-shock sequence. It 
can be observed that the structure immediately verifies 
the life-safety limit state when the residual damage is 
minimal; whereas, it might take more than a year 
before the structure verifies in cases where the residual 
damage is very significant.  

 

Figure 2: Time elapsed after the occurrence of the 
main-shock in order to verify the life-safety 
requirements 

 
The figure also illustrates the time required for the 
structure in order to verify the collapse limit state for 
the generic California after-shock sequence (the 
dashed line) and the generic Italian after-shock 
sequence (the dotted line). It can be observed that for a 
given level of residual damage in the structure, more 
time is required in order to verify the collapse limit 
state when the parameters of the generic after-shock 
sequence are considered instead of those of the 
L’Aquila sequence.  

5   CONCLUSIONS 
This paper presents a preliminary effort for 
quantification of the time-variant probability of 
exceeding various discrete limit states for a structure 
in an after-shock prone environment. A simple 
methodology is presented for calculating the 
probability of exceeding a limit state in a given 
interval of time elapsed after the occurrence of the 
main-shock event. This procedure employs an after-
shock model based on the modified Omori law in 
order to model the time-decay in the mean daily rate 
of the occurrence of significant after-shocks. The 
seismic after-shock hazard at the site of the structure is 
calculated by setting the main-shock moment 
magnitude as the upper limit for magnitude and is 
updated using the Bayes formula given that the small-
amplitude spectral acceleration of the main-shock at 
the fundamental period of the structure is known. The 
progressive damage caused by the sequence of after-
shock events is modeled in the form of a suite of 
different ground motion recordings that are applied 
(repeatedly) to the simplified structural model that 
includes cyclic stiffness degradation. Conditioned on 
the occurrence of a given number of after-shocks, the 
fundamental period of the damaged structure and its 
residual and maximum displacement response are 
calculated. The statistics of the structural response to 
the suite of records can then be used to calculate the 
probability of exceeding the limit state capacity. It can 
be observed that the probability of exceeding the limit 
state capacity increases as a function of the number of 
significant after-shocks until it reaches a plateau and 
remains constant afterwards. Conditioned on the 
occurrence of a given main shock event, the 
probability of exceeding the limit states of 
serviceability, onset of damage, severe damage and 
collapse in a given interval of time are calculated. It 
can be observed that the limit state probabilities 
increase as a function of time although they seem to 
reach a constant threshold at the end of a year passed 
from the occurrence of the main-shock. In order to 
better observe this effect, the collapse limit state 
probability in a 24-hour period is calculated as the 
increment of the time-variant limit state probability in 
a given interval of time (measured in days). In fact, 
comparing the time-variant probability of collapse in a 
24-hour period of time against an acceptable 
threshold, it can be observed that the strongly 
damaged structure could be occupied after a certain 
amount of days has elapsed after the occurrence of the 
main-shock while the lightly damaged structure could 
be occupied immediately. This type of verification can 
be useful for evaluation of re-occupancy risk for the 
structures located in a zone prone to after-shocks, 
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based on the life-safety criterion. In fact, the necessary 
time elapsed after the main-shock for the structure to 
verify the life-safety requirements is calculated as a 
function of different values of residual to collapse 
displacement capacity ratio. It is observed that time 
needed to verify against the life-safety limit state 
increases exponentially as a function of the level of 
residual damage undergone after the main-shock. The 
methodology presented in this work is adaptive in the 
sense that the limit state probability evaluations can be 
updated in time as more after-shock events take place. 
The proposed methodology could be used for post-
earthquake decision-making between a set of viable 
actions such as, evacuation, shut-down, repair and re-
occupancy. 
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